
Using Simulation for Hospital Planning

Carolyn Volker Ali Latif Antony George

Hamad Medical Corporation

Patient Flow – A System

Understanding the System

Demand – Who Needs the Service	Capacity – Resources Req.		
Emergency Admissions	Space in ED		
Elective Admissions	Number OR's		
Number & Specialty	Number Beds – Specialty		
Other Admissions	Staff		
Elective Cancellations	Information Systems		
Discharges & Timeliness	Access to Diagnostics		
IP Length of Stay	Escalation & Coordination Systems		

Right Patient - Right Place - Right Time – First Time

Understanding our System – Who Are We?

Hamad Medical Corporation

HMC National System Great Vision 8 hospitals (more on way)

EMS Primary Care being developed

HGH

A Busy Tertiary Hospital

Trauma Centre

ED 1500 Attendances Per Day

Elective Procedures

Full Range OPD

So What's the Problem ?

Identifying the Problem – Facts

8am Snapshot Audit

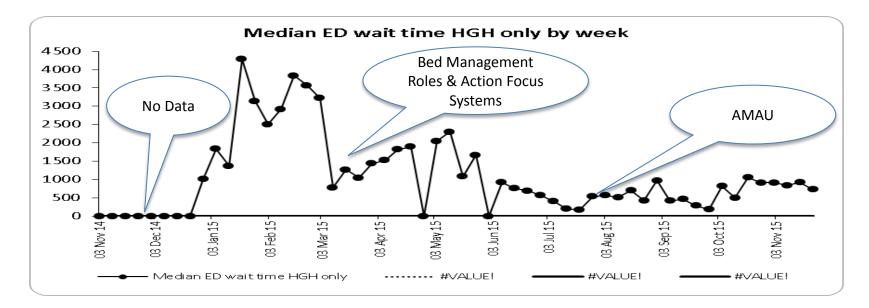
- 45 50 Pending Admissions in ED No Beds
- 6 Critical Care Patients
- 10 Cardiology Patients
- 13 Surgical Patients
- 13 15 Medical Patients
- 4-5 Psychiatry Patients
- Boarders in PACU
- Most Electives Cancelled More than Once
- Very Long Waits for Beds

Understanding the System - Constraints

What We Did not Have !

- PAS Medicom System Not Fully Utilised
- Electronic Booking Systems Inpatients
- ED Information Systems
- Bed Management / Co ordination Structures
- System Awareness / Response / Escalation
- High Level Data Non Specialty Specific

What We Did Have !


- We Keep Lots of Data All Paper Everywhere
- Great Staff

What have we done so far ?

- Daily Clinical Flow Management & Coordination
- Acute Medical Assessment Unit
- Relocated long term care patients
- Corporate awareness New Facilities
 - MICU, SICU, TICU, ED, OR's
 - New Ambulatory / Elective Facilities
- System wide bed management capacity system
- Surgical booking in Urology / Bariatrics

Information

1

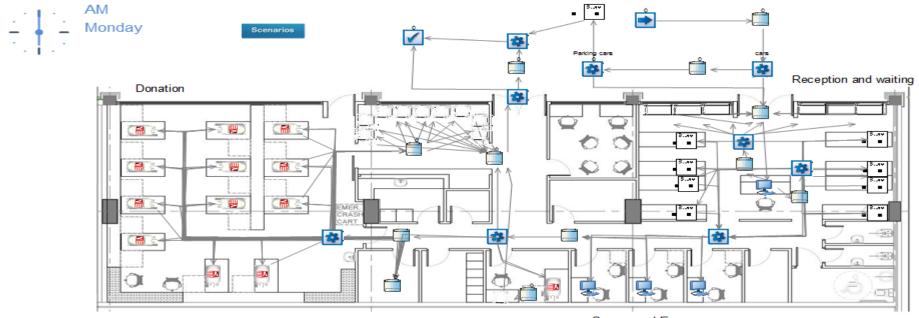
Understanding our System by Modelling

- Started with a vision Insightful colleagues
- Purchased the software
- Set up a very small team
- Success factor of team
 - Analyst
 - Flow champions & Clinical Operations
 - Clinical lead strategy & planning
- Training sessions in Doha
- Completed a few models
- Middle East Forum 2016

Challenges we Faced

- Recognition a system issue
- Information
- Chiefs and Chairs
- Hearts and Minds
- Patient Focus
- Perseverance
- Celebrate Success
- Will

THE BLOOD DONOR UNIT

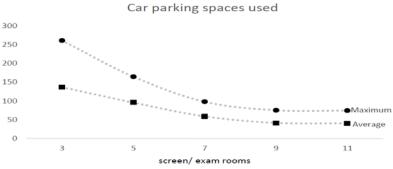

The National Blood Donation Center

- Receives 50% of all donations for the state of Qatar.
- The current unit is viewed as suboptimal, with its design no longer meeting the needs of the department in providing a high quality service for blood donors.
- A series of emergencies have led to discussions regarding what capacity requirements should be considered in the event of a major disaster.
- An estimate of future capacity requirements

The National Blood Donation Center

- 1. What is the optimal configuration of the blood donor unit, based on current service demand?
- 2. What would be the optimal configuration of the blood donor unit based on 30,000 yearly donations at the unit?
- 3. What would be the optimal configuration of the unit when planning for a major disaster?

BLOOD DONOR MODEL


Screen and Exam

N

The National Blood Donation Center

		Reception	Registration	Screen/ Exam	Donor	Parking
1	Current	4	0	1+1	6	10
2	Recommended	1	5	3	6	8
3	30,000	1	5	3	6	13
4	Disaster	2	5	9	12	75

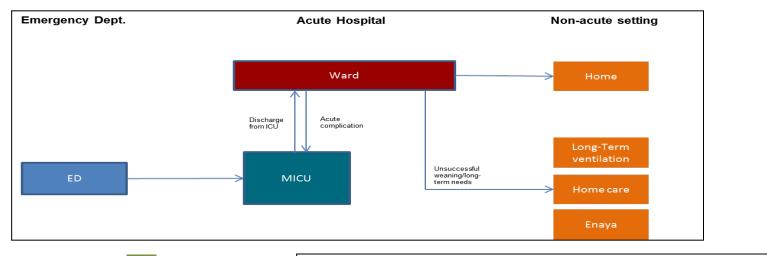
Outcome

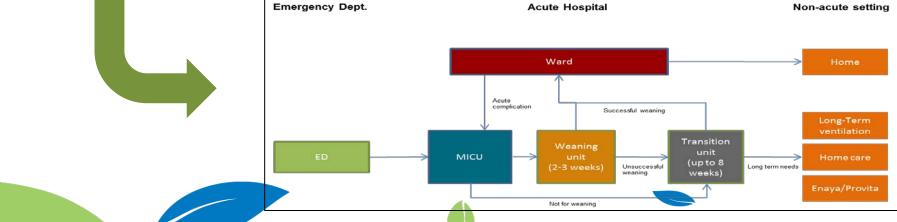
- Optimal donor unit configuration identified
- Identified the need for a 'surge' facility in a disaster scenario
- Represented an approximately 30% saving on new build, staffing, operating costs (6 vs.12 chairs)

THE CRITICAL CARE UNIT

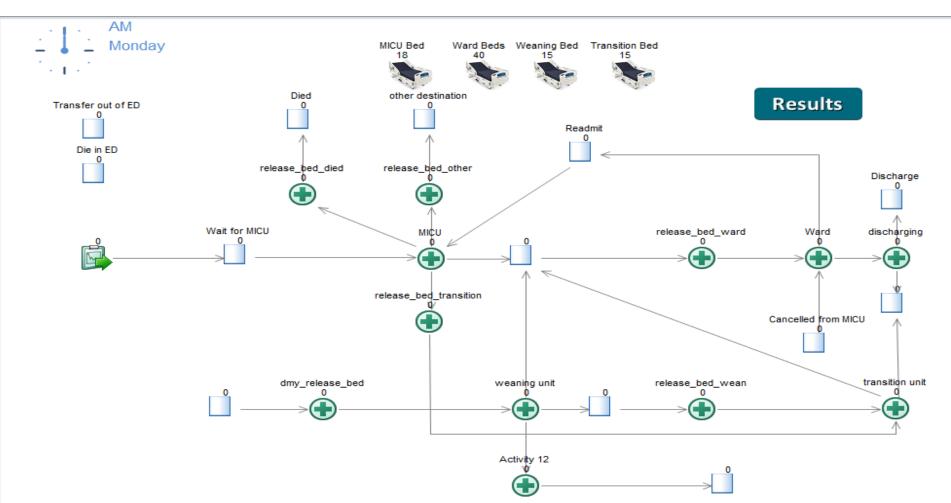
The critical care unit

- Current 23-bed capacity
- Inadequate capacity with a high proportion of patients not admitted to the unit
- An original plan to expand to a 44 bed facility was postponed indefinitely in Jan 2016

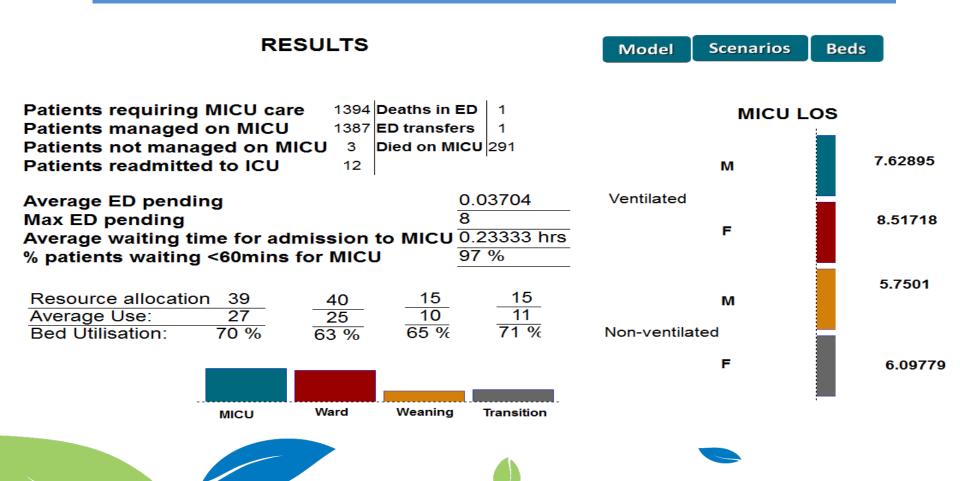

Question:


• What is the ideal capacity of the critical care unit?

KPIs:


- 99% of patients admitted to unit
- Patients admitted to unit within 1 hour of decision to admit

The critical care unit



CRITICAL CARE MODEL

Results

Outcome

Ch

- Optimal configuration identified
- Results informed a business plan that was approved
- A new pathway and reconfiguration of capacity will be undertaken
- Multi-disciplinary working

Using SIMUL8 to Educate

- Make flow a game Middle East Forum
- Using it to explain simple flow concepts -
- Simple flow models (IHI forum) teach basic concepts such as
 - Variation
 - Occupancy
 - Bed capacity

What is the ideal bed occupancy?

0141 552 6888 | www.SIMUL8Healthcare.com | healthcare@SIMUL8.com

What is occupancy and why does it matter?

Occupancy: proportion of utilized beds in a ward – normally quoted as an average

- -2000 admissions at 5 days each = 10,000 bed days = 27.3 beds
- 27.3/30 = 91% occupancy

Commonly quoted target acute ward occupancy of 85%

High occupancy has been linked to increased risk to patient care.

Low occupancy mean less cost-effective services

The Simulation

0141 552 6888 | www.SIMUL8Healthcare.com | healthcare@SIMUL8.com

Question

How many beds do we need to ensure 100% of patients wait less than the target?

- A: 85
- B: 90
- C: 95
- D: 100

What determines the ideal bed occupancy?

Demand pattern

- Unscheduled vs. scheduled
- Variation in admission rate

Acuity (target wait times)

- How long can patients afford to wait in ED?

Discharge pattern

- Variation in length of stay and discharge

Our Lessons Learnt

- Visual Impact really important
- The make up of the modelling team is critical
- The team requires time to learn and build models
- Executive support & buy in is essential
- Models should align with corporate objectives
- It is a great tool for teaching principles of flow

Summary

• To truly perform well we have to understand the whole system

• It is important to analyze our system scientifically.

• We need to be able to test solutions to our problems without increasing patient risk